Python Python关键字 Python学习笔记 5 mins

Python中的yield关键字分析:一个Generator

27-03-20 / 2365 Words

写作不易,资瓷一下呗!个人博客:https://raycoder.me

本文首发于Ray's Blog

我们先来康一段代码:

>>> def count(n):
		for i in range(1, n+1):
			print(i)

>>> count(5)
1
2
3
4
5

这一小段代码执行了计数,输出了1-5。

不过,有时我们会有一些想♂FA,想要每次获取下一个数,如第一次执行时给你返回1,第二次返回2,第三次返回3……如此如此。

你可能会这么做:

>>> n = 0
>>> def addone():
		global n
		n+=1
		print(n)

>>> addone()
1
>>> n
1

但这样又暴露了一个缺点:我们使用了一个全局变量。想要避免这种缺点又要实现计数的功能,yield就派上用场了。

想要实现Generator的功能,只需要对代码进行一处改动:把print()改成yield即可。

>>> n = 0
>>> def count(n):
		for i in range(1, n+1):
			yield i

>>> c = count(5)
>>> c
<generator object addone at 0x000002329F851048>
>>> 

你会发现,这个c的类型像是一个对象了。

>>> c = count(5)
>>> next(c)
1
>>> next(c)
2
>>> next(c)
3
>>> next(c)
4
>>> next(c)
5
>>> next(c)
Traceback (most recent call last):
  File "<pyshell#18>", line 1, in <module>
    next(c)
StopIteration
>>> 

我们使用了next()内置函数让Generator进行下一次迭代。由此可见,yield像是一个类似于return的迭代器

再来一个示例,生成斐波那契数列:

1. 简单输出斐波那契數列前 N 个数
def fab(max): 
   n, a, b = 0, 0, 1 
   while n < max: 
       print(b)
       a, b = b, a + b 
       n = n + 1

执行 fab(5),我们可以得到如下输出:

>>> fab(5)
1
1
2
3
5

结果没有问题,但有经验的开发者会指出,直接在 fab 函数中用 print 打印数字会导致该函数可复用性较差,因为 fab 函数返回 None,其他函数无法获得该函数生成的数列。

要提高 fab 函数的可复用性,最好不要直接打印出数列,而是返回一个 List。以下是 fab 函数改写后的第二个版本:

2. 输出斐波那契數列前 N 个数第二版
def fab(max): 
   n, a, b = 0, 0, 1 
   L = [] 
   while n < max: 
       L.append(b) 
       a, b = b, a + b 
       n = n + 1 
   return L

可以使用如下方式打印出 fab 函数返回的 List:

>>> for n in fab(5): 
...     print(n)
... 
1 
1 
2 
3 
5

改写后的 fab 函数通过返回 List 能满足复用性的要求,但是更有经验的开发者会指出,该函数在运行中占用的内存会随着参数 max 的增大而增大,如果要控制内存占用,最好不要用 List

来保存中间结果,而是通过 iterable 对象来迭代。例如,在 Python2.x 中,代码:

清单 3. 通过 iterable 对象来迭代
for i in range(1000): pass

会导致生成一个 1000 个元素的 List,而代码:

for i in xrange(1000): pass

则不会生成一个 1000 个元素的 List,而是在每次迭代中返回下一个数值,内存空间占用很小。因为 xrange 不返回 List,而是返回一个 iterable 对象。

利用 iterable 我们可以把 fab 函数改写为一个支持 iterable 的 class,以下是第三个版本的 Fab:

清单 4. 第三个版本
class Fab(object): 
 
   def __init__(self, max): 
       self.max = max 
       self.n, self.a, self.b = 0, 0, 1 
 
   def __iter__(self): 
       return self 
 
   def next(self): 
       if self.n < self.max: 
           r = self.b 
           self.a, self.b = self.b, self.a + self.b 
           self.n = self.n + 1 
           return r 
       raise StopIteration()

Fab 类通过 next() 不断返回数列的下一个数,内存占用始终为常数:

>>> for n in Fab(5): 
...     print(n)
... 
1 
1 
2 
3 
5

然而,使用 class 改写的这个版本,代码远远没有第一版的 fab 函数来得简洁。如果我们想要保持第一版 fab 函数的简洁性,同时又要获得 iterable 的效果,yield 就派上用场了:

清单 5. 使用 yield 的第四版
def fab(max): 
    n, a, b = 0, 0, 1 
    while n < max: 
        yield b 
        # print(b)
        a, b = b, a + b 
        n = n + 1 

第四个版本的 fab 和第一版相比,仅仅把 print b 改为了 yield b,就在保持简洁性的同时获得了 iterable 的效果。

调用第四版的 fab 和第二版的 fab 完全一致:

>>> for n in fab(5): 
...     print(n)
... 
1 
1 
2 
3 
5

简单地讲,yield 的作用就是把一个函数变成一个 generator,带有 yield 的函数不再是一个普通函数,Python 解释器会将其视为一个 generator,调用 fab(5) 不会执行 fab 函数,而是返回一个 iterable 对象!在 for 循环执行时,每次循环都会执行 fab 函数内部的代码,执行到 yield b 时,fab 函数就返回一个迭代值,下次迭代时,代码从 yield b 的下一条语句继续执行,而函数的本地变量看起来和上次中断执行前是完全一样的,于是函数继续执行,直到再次遇到 yield。

也可以手动调用 fab(5) 的 next() 方法(因为 fab(5) 是一个 generator 对象,该对象具有 next() 方法),这样我们就可以更清楚地看到 fab 的执行流程:

清单 6. 执行流程
>>> f = fab(5) 
>>> f.next() 
1 
>>> f.next() 
1 
>>> f.next() 
2 
>>> f.next() 
3 
>>> f.next() 
5 
>>> f.next() 
Traceback (most recent call last): 
 File "<stdin>", line 1, in <module> 
StopIteration

当函数执行结束时,generator 自动抛出 StopIteration 异常,表示迭代完成。在 for 循环里,无需处理 StopIteration 异常,循环会正常结束。

我们可以得出以下结论:

一个带有 yield 的函数就是一个 generator,它和普通函数不同,生成一个 generator 看起来像函数调用,但不会执行任何函数代码,直到对其调用 next()(在 for 循环中会自动调用 next())才开始执行。虽然执行流程仍按函数的流程执行,但每执行到一个 yield 语句就会中断,并返回一个迭代值,下次执行时从 yield 的下一个语句继续执行。看起来就好像一个函数在正常执行的过程中被 yield 中断了数次,每次中断都会通过 yield 返回当前的迭代值。

yield 的好处是显而易见的,把一个函数改写为一个 generator 就获得了迭代能力,比起用类的实例保存状态来计算下一个 next() 的值,不仅代码简洁,而且执行流程异常清晰。

如何判断一个函数是否是一个特殊的 generator 函数?可以利用 isgeneratorfunction 判断:

清单 7. 使用 isgeneratorfunction 判断
>>> from inspect import isgeneratorfunction 
>>> isgeneratorfunction(fab) 
True

要注意区分 fab 和 fab(5),fab 是一个 generator function,而 fab(5) 是调用 fab 返回的一个 generator,好比类的定义和类的实例的区别:

清单 8. 类的定义和类的实例
>>> import types 
>>> isinstance(fab, types.GeneratorType) 
False 
>>> isinstance(fab(5), types.GeneratorType) 
True

fab 是无法迭代的,而 fab(5) 是可迭代的:

>>> from collections import Iterable 
>>> isinstance(fab, Iterable) 
False 
>>> isinstance(fab(5), Iterable) 
True

每次调用 fab 函数都会生成一个新的 generator 实例,各实例互不影响:

>>> f1 = fab(3) 
>>> f2 = fab(5) 
>>> print('f1:', f1.next())
f1: 1 
>>> print('f2:', f2.next())
f2: 1 
>>> print('f1:', f1.next())
f1: 1 
>>> print('f2:', f2.next())
f2: 1 
>>> print('f1:', f1.next())
f1: 2 
>>> print('f2:', f2.next())
f2: 2 
>>> print('f2:', f2.next())
f2: 3 
>>> print('f2:', f2.next())
f2: 5

return 的作用

在一个 generator function 中,如果没有 return,则默认执行至函数完毕,如果在执行过程中 return,则直接抛出 StopIteration 终止迭代。

另一个例子

另一个 yield 的例子来源于文件读取。如果直接对文件对象调用 read() 方法,会导致不可预测的内存占用。好的方法是利用固定长度的缓冲区来不断读取文件内容。通过 yield,我们不再需要编写读文件的迭代类,就可以轻松实现文件读取:

清单 9. 另一个 yield 的例子
def read_file(fpath): 
   BLOCK_SIZE = 1024 
   with open(fpath, 'rb') as f: 
       while True: 
           block = f.read(BLOCK_SIZE) 
           if block: 
               yield block 
           else: 
               return

以上仅仅简单介绍了 yield 的基本概念和用法,我们会在后续文章中讨论。

转载了一部分内容:Python yield 使用浅析 | IBM